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Abstract. We present a novel thickness inversion approach that leverages globally available satellite products and state-of-the-

art ice flow models to produce distributed maps of subglacial topography independent of bed observations. While the method

can use any complexity of ice physics as represented in ice dynamical models, it is computationally cheap, enabling applications

both on local and large scales. Using the mismatch between observed and modelled rates of surface elevation change (dh/dt)

as the misfit functional, iterative pointwise updates to an initial guess of bed topography are made, while mismatches between5

observed and modelled velocities are used to simultaneously infer basal friction. The final product of the inversion is not only

a map of ice thickness, but a fully spun-up glacier model representing the dynamic state of a given glacier. We here present the

method, and use an artificial ice-cap built inside a numerical model to test it and conduct sensitivity experiments. Even under

a range of perturbations, the method is stable and fast. Finally, we apply the approach to the tidewater glacier Kronebreen on

Svalbard. Ultimately, our method shown here represents a fast way of inferring ice thickness where the final output forms a10

consistent picture of model physics, input observations and bed topography.

1 Introduction

Knowledge of the ice thickness of glaciers is crucial for a range of applications, from field work planning, to water management

and ultimately for projections of expected sea level rise in the face of climate warming (Oppenheimer et al., 2019; Rounce et al.,15

2023). Ice thickness not only determines the ice volume of a glacier, but the subglacial topography is furthermore a key control

on future retreat of glaciers. As such, accurate bed maps are instrumental to initialize prognostic simulations of numerical ice

flow models with the correct boundary conditions.

Ice thickness can be established using geophysical methods such as ground-penetrating radar (Bogorodsky et al., 1985).

However, observations are only dense along their acquisition lines, while considerable spacing between lines is the norm.20

To produce distributed maps of ice thickness, statistical techniques have been developed to interpolate between observations
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(Flowers and Clarke, 1999; Fretwell et al., 2013; Neven et al., 2021). However, only a small fraction of glaciers worldwide

have any thickness observations at all (Welty et al., 2020).

As an alternative to field measurements, inversion techniques have been introduced that allow to derive a bed estimate from

easily-obtainable surface observations alone. Early works include the use of scaling relationships that allow the computation of25

mean bed elevation from surface area (i.e. volume-area scaling, Chen and Ohmura (1990); Bahr et al. (1997, 2014)). More ad-

vanced approaches apply computational methods relying on a physical understanding of how ice flows, often (when available)

in conjunction with measured ice thicknesses. The underlying rationale is that easily observable surface characteristics, such

as the surface elevation height, are a product of the external climate forcing (e.g. climatic mass balance), ice dynamics and the

subglacial topography, and therefore an inference about the latter can be made from knowledge of the previous. The recent30

years have seen an increasing amount of such new ice thickness inversion approaches; an overview of widely used methods

is given in Farinotti et al. (2017, 2021). The large majority of approaches follow at least one of the two strategies: in the first,

the physical calculations of ice dynamics underpinning the inversion are conducted along flow-lines or at randomly selected

points on a glacier, and subsequently the results are extrapolated to surrounding areas, often while taking into account some

first-order glaciological principles, e.g. the strong link between surface slope and ice thickness (Farinotti et al., 2009; Linsbauer35

et al., 2009; Huss and Farinotti, 2012; Li et al., 2012; Linsbauer et al., 2012; Paul and Linsbauer, 2012; Clarke et al., 2013;

Frey et al., 2014; Brinkerhoff et al., 2016; Rabatel et al., 2018; Maussion et al., 2019; Werder et al., 2020). This is computation-

ally efficient as compared to calculating distributed ice thickness fields, but comes with the limitation that the physics-based

inversion is only conducted at specific locations. In the second approach, a simple model considering only internal shear (i.e.

the shallow ice approximation, SIA) is applied to turn a modelled or observed quantity (e.g. depth-integrated ice flux, surface40

velocities) into ice thickness, sometimes complemented with a parameterization for basal sliding (Farinotti et al., 2009; Huss

and Farinotti, 2012; Li et al., 2012; Linsbauer et al., 2012; Paul and Linsbauer, 2012; Clarke et al., 2013; Frey et al., 2014;

Gantayat et al., 2014; Fürst et al., 2017; Rabatel et al., 2018; Langhammer et al., 2019; Maussion et al., 2019; Werder et al.,

2020; Zorzut et al., 2020; Millan et al., 2022). These approaches are also computationally cheap compared to calculations

based on a higher-order or Full-Stokes model, and they exploit the simple mathematical nature of the depth-integrated SIA.45

However, the simplifying assumptions on ice dynamics that are at the heart of the SIA translate into errors in the calculated

ice thicknesses at locations where the conditions are not met. Although different in their complexity, their required inputs and

their strengths and limitations (for more details the reader is referred to the respective publications), the thickness inversion

approaches discussed here share limitations that arise from following one or both of the mentioned strategies. For instance,

using a bed derived with such methods for prognostic simulations with map-plane higher-order or Full-Stokes models requires50

initial model relaxation that likely results in a glacier state significantly different from observations.

A different approach was presented by van Pelt et al. (2013), building on previous work in the context of inversion problems

in fluid mechanics (Heining, 2011). Using historical observations of external forcing, and starting from an initial guess for bed

topography, they use the ice flow model PISM (Bueler and Brown, 2009) to simulate centuries of glacier evolution up until

present day, when a comparison between modelled and observed surface elevation is made. Based on the assumption that any55

deviations between the two are due to errors in the bed, this mismatch is then used to update the subglacial topography. These
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two steps are repeated iteratively until a certain stopping criterion is reached. This approach allows to include any physics

that state-of-the-art ice flow models feature and it results in a distributed map of bed topography that is in balance with the

present-day dynamic state of the glacier and the external forcing. For ensuing prognostic simulations, no relaxation is needed

as all input parameters and physics used for the forward simulations can also be used in the thickness inversion.60

The approach by van Pelt et al. (2013) is based on the idea that the present-day dynamic state of a glacier is best reproduced

by simulating that glacier for centuries up until today using historical forcing. However, such forcing data is rarely available

and subject to considerable uncertainties. Furthermore, due to the long time spans modelled the approach is computationally

costly. Here, we exploit the fact that the instantaneous rate of surface elevation change dh/dt, which also represents the

dynamic state of a glacier, is much faster to model allowing one to apply a similar methodology as in van Pelt et al. (2013)65

while only requiring a fraction of the computational resources. In our new approach, we furthermore extend the capabilities

of the thickness inversion in that we simultaneously infer basal friction using observed surface velocities akin to a previously

published approach (Pollard and DeConto, 2012). Ultimately, we establish a framework that is able to provide a comprehensive

view of the state of a glacier consistent with its external forcing, its ice dynamics and its bed topography while being at low

computational cost. Allowing to choose between different levels of complexity for the ice-flow physics and whether or not to70

simultaneously infer basal friction, our approach is suitable both for detailed inversions at the local scale as well as for fast

large-scale applications.

In the following, we describe our new fast ice thickness inversion approach using PISM as a forward model, we demonstrate

its capabilities with an example of an artificial ice cap grown inside a numerical model, and apply and test it on the tidewater

glacier Kronebreen on Svalbard.75

2 A new thickness inversion approach

2.1 Method

The general functional principle derives from the idea that a numerical model of a glacier initialized with the correct boundary

conditions should behave similarly to a real glacier; if not, one needs to conclude that the model setup is erroneous in some

part. In a simple case without basal sliding and neglecting thermodynamic processes, the first-order controls on ice dynamics80

are the climatic mass balance, the glacier surface shape and the bed. By assuming that it is possible to set up a numerical

ice-flow model where all of these inputs are sufficiently well represented except for bed topography (because they are surface

observations), we may attribute any differences in modelled vs. observed ice geometry and dynamics to originate from errors

in the bed.

To turn this framework into an inversion approach, the following workflow is applied (Fig. 1): First, a numerical representa-85

tion of a glacier is set up inside an ice flow model with observations of surface shape from a digital elevation model (DEM) and

climatic mass balance. Furthermore, some arbitrary bed shape is assumed. For instance, it is straightforward to derive a rough

bed estimate from a DEM with the perfect-plasticity method (Nye, 1952; Haeberli and Hoelzle, 1995). As Habermann et al.
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Figure 1. Schematic representation of bed corrections during thickness inversion workflow, assuming a steady-state glacier (dh/dtobs = 0)

with observed surface Sobs. Without the bed bump at iteration i, the modelled surface Smod subsides during a short forward simulation,

rendering dh/dtmod negative. As given by eq. (1), this negative misfit between modelled and observed dh/dt results in an uplift of the bed.

(2012) points out, though, an initial bed guess should not contain roughness not justified by the input data, so some smoothing,

e.g., with a gaussian filter, may be in order.90

Then, the ice-flow model is run forward with the goal of comparing whether modelled and observed ice dynamics agree. As

described before, the target variable here is the rate of surface elevation change dh/dt as a measure for the dynamic state of

the glacier. From the model side, this requires only a stress balance simulation or a simulation with a short timescale length dt

to compute the instantaneous dh/dtmod. From the observational side, it requires either an already existing dh/dt product (e.g.

Hugonnet et al., 2021), or two DEMs from different years, where it is assumed that the rate of surface elevation change between95

them is constant, allowing the derivation of the quantity dh/dtobs. If dh/dtmod = dh/dtobs, it is reasonable to conclude that

the bed topography is correct, because the model correctly reproduces the observations. However, in the more likely event

that they are not equal, the differences between the two are ascribed to originate from errors in the bed, following the logic

discussed above.

If there is a mismatch between a modelled and observed quantity, previous work has shown point-wise updates can be100

applied to the unknown parameter (in this case bed topography) as a simple function of that mismatch (van Pelt et al., 2013;

Michel et al., 2013; Heining, 2011; Pollard and DeConto, 2012). Here, a new bed Bi+1 is hence produced by subtracting, at

any point in space in the domain, the misfit in modelled vs. observed dh/dt at that point from the present bed Bi such that

Bi+1 = Bi−β

(
dhi

mod

dt
− dhobs

dt

)
(1)

where β is a scalar that controls the magnitude of bed corrections. These simple steps described here (running the model105

forward, computing the misfit in modelled vs. observed dh/dt and updating the bed) are repeated iteratively until a satisfactory

solution for the bed is found (Fig 1). Note that van Pelt et al. (2013) used a similar equation, although instead of dh/dt,
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the modelled surface elevation Smod after century-long time-dependent runs was used to calculate a misfit with the observed

surface Sobs, requiring much greater computational resources.

Our experiments show that this simple approach alone is capable of recovering subglacial topography for a non-sliding110

glacier yielding an overall good match with the true bed. However, previous research has shown that ice thickness inversion

is non-unique. Small scale bed undulations leave no expressions on the glacier surface and hence an inversion, regardless of

the method used, can make no statement on the existence or non-existence of such features (Gudmundsson, 2003; Bahr et al.,

2014). For our approach, this implies that the derived bed may contain such small-scale undulations that are not justified by

the input data if the solution is not biased towards outcomes that take these limitations into account. Furthermore, real-world115

problems imply that input data and model physics are never perfect, meaning that not all deviations between modelled and

observed dynamics can be attributed to originate from errors in the bed.

Previous work in the spirit of traditional inversion theory has tackled this issue by introducing so-called regularization terms

which force the modelled bed to be smooth and which account for a degree of imperfection in the model (Habermann et al.,

2012). Here, we present a novel way of handling this issue: every time the bed topography is updated, a small proportion θ of120

the dh/dt misfit is used to also update the glacier surface S in the opposite direction of the bed such that a new surface Si+1

is given by

Si+1 = Si + θβ

(
dhi

mod

dt
− dhobs

dt

)
. (2)

Doing so results in a ’squeezing’ effect where an upwards correction of the bed (i.e. the ice thickness becomes smaller) results

in a lowered glacier surface at that point, and vice versa for a downwards bed correction. This leads to locally steeper surface125

slopes and therefore increased driving stresses which gently induce further bed corrections in surrounding areas, thus evening

out small bed undulations. At the same time, the small changes in the surface shape allow the model to accommodate observa-

tions which it otherwise cannot reproduce, be it because of input errors or imperfect model physics. Indeed, our experiments

show that the bed and surface updates interact to finally yield a configuration where dh/dtmod = dh/dtobs.

Finally, our method works well under the assumption that sliding is not significant. Where this simplification does not hold,130

one solution is to prescribe some friction field. However, this makes the modelled ice thickness dependent on an often poorly

constrained parameter which could lead to considerable errors in the recovered bed. Here, we address this issue by inverting

for basal friction following a similar methodology as in Pollard and DeConto (2012). Most sliding laws have a parameter

(often termed friction coefficient, yield stress, etc.) that varies in space but is constant in time which controls the strength

of the subglacial material, and hence the amount of sliding. We invert for this parameter F in a similar fashion as shown135

before. Specifically, again an initial guess for F is made which is subsequently updated, however, this time using a mismatch

in modelled vs. observed ice flow speed u, such that

F i+1 =





F i−λF i, if ui
mod−uobs

uobs
<−λ

F i + λF i, if ui
mod−uobs

uobs
> λ

F i + F i
(

ui
mod−uobs

uobs

)
, otherwise.

(3)
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The parameter λ serves to prevent too strong updates to the friction field. Importantly, bed and friction are not updated in

the same iteration. This is because the dh/dt misfit and the velocity misfit both represent a mismatch in modelled vs. observed140

flow dynamics and it is not clear how to disentangle which part of that mismatch is due to an erroneous friction field vs.

an erroneous bed. So instead, F is only updated once after the model has converged to a solution for ice thickness. At that

point, a model configuration that can explain dh/dtobs has been found. However, only if that model also explains observed

surface speed is it reasonable to conclude that the imposed friction field is correct, assuming that the friction field is the largest

remaining unknown control on ice dynamics. If there is no agreement in modelled vs. observed surface speed, F is likely not145

correct (again under that same assumption) and hence the modelled bed elevation is erroneous. A change in the friction field

will trigger a response of the ice dynamics, and so dh/dtmod will no longer match dh/dtobs after having updated F . Following

a friction update, a new bed thus needs to be found that can explain dh/dtobs with that new friction field. Therefore, again bed

and surface updates according to eq. (1) and (2) need to be applied until any dh/dt mismatch is resolved. Subsequently, the

velocity mismatch is evaluated and if needed, F is updated. Ultimately, this alternation between many bed updates and one150

friction update is repeated until a combination of a bed and friction field is found that explains both dh/dtobs and uobs.

2.2 Model

While the method is not bound to a specific ice-flow model, we use the Parallel Ice Sheet Model (PISM v.2.0.4, Bueler and

Brown (2009)) for the ice-flow simulations. Below, we briefly present relevant aspects of PISM with respect to our thickness

inversion method, but refer the reader to the literature for a more in-depth description (Bueler and Brown, 2009; Winkelmann155

et al., 2011).

PISM allows the glaciological stress-balance equations to be solved using one of four approximations to the Full-Stokes

equations: the shallow ice approximation (SIA), the shallow shelf approximation (SSA), a hybrid SSA+SIA scheme or the

Blatter-Pattyn higher-order model (Blatter, 1995; Pattyn, 2003). Any of them is suitable for the thickness inversion, but we

here apply the hybrid SSA+SIA scheme. To simulate sliding, different laws are available, some of which allow interaction with160

modelled thermodynamics to yield values of subglacial water availability which in turn determines basal friction. In this work,

we do not include thermodynamic processes (sec. Discussion), and rely instead on a simple pseudo-plastic power law where

basal shear stress τ b is given by

τ b =−τc
u

uq
th|u|1−q

(4)

where uth is the threshold velocity where τb has the same magnitude as the yield stress τc and q ∈ [0,1] is an exponent165

determining the plasticity of the sliding law (q = 1 represents a linear sliding law). τc is a spatially variable constant which

reflects the strength of the subglacial bed and hence determines the degree of sliding. This is the quantity that we invert for in

eq. (3).
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Table 1. Parameter values used for building the ice cap and the subsequent inversion.

Parameter Value

Ice temperature 268 K

Ice density 910 kg m−3

q 0.333

uth 1 m s−1

β 1

θ 0.025

dt 0.1 yr

λ 0.5

3 Synthetic experiments

3.1 The synthetic ice cap170

We start by using our new method on an artificial ice cap. We first design a domain with a 50 x 50 grid and a resolution of 2 km

where we define a bed topography consisting of a flat bed including two large (500 m tall) and two small (350 m tall) bumps

with a prescribed mass balance field (Fig. 2a). Furthermore, we design a friction field by setting the parameter τc such that the

left half of the domain is slippery, allowing ice to slide, while the right half is sticky, preventing any basal motion. We use a

non-linear sliding law as in the MISMIP experiments (Pattyn et al., 2012) by setting the sliding law parameters q = 1/3 and175

uth = 1m s−1 in eq. (4) (Tab. 1). Subsequently, we grow the ice cap inside PISM for 10 kyrs using the isothermal SSA+SIA

scheme allowing us to obtain a steady-state configuration with a maximum ice thickness of ∼1000 m. Then, we ’forget’ the

bed and friction field and try to recover them. For the thickness inversion, we use as inputs the same mass balance as applied

when growing the ice cap, the surface of the grown ice cap, a reference dh/dtobs field that is zero everywhere (since the ice

cap is in steady-state), and make a first bed guess assuming a completely flat bed without bumps (Fig. 2a). For the friction180

inversion, our first guess is that the domain is sticky everywhere, and the input required to later update this guess is the velocity

field of the grown ice cap. Subsequently, we simulate a short forward run with dt = 0.1 yrs and update the bed and the ice

cap surface according to eq. (1) and (2). To prevent irregularities at the ice cap margins where spurious boundary effects can

occur, we do not apply any updates in a band of two cells width at the ice cap margin, but set the bed elevation to zero there.

As we iteratively update the bed and the surface in that way, we calculate for all n grid points inside the ice-covered domain185

the median dh/dt misfit ∆dh defined as

∆dh = med

(
dhmod

dt
− dhobs

dt

)
, (5)

and the mean absolute bed misfit |∆B|, given by
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Figure 2. Example of the thickness inversion for a ‘home-grown’ ice cap (i.e. ice cap is created, then the bed and friction field is ‘forgotten’

before the inversion is run with the same physics as the build-up). a) Bed and friction field used to build the ice cap plus the surface elevation

and velocity of the artificial ice cap. b) dh/dt and bed misfit per iteration step i with sharp peaks and distinct steps indicating times at which

friction field was updated (top panel). Cross-section through bed along y=23 km at each iteration step (lower left) and final bed elevation

after 12000 iterations (lower right panel)

|∆B|= 1
n

n∑

1

|Bmod−Bref |. (6)

After 1000 iterations, we apply a friction update according to eq. (3). Note that this amount of iterations between friction190

updates is rather arbitrary; we here choose it simply because this number is large enough to ensure that the dh/dt misfit is

sufficiently small at that point so that no more bed updates are occurring. While |∆B| is generally reduced as the iterative

inversion progresses, each friction update induces a short response in the ice dynamics that briefly increases the ∆dh.As seen

in Fig. 2b, the steep decline of the bed misfit at these instances highlights that those friction updates are crucial for finding the

correct bed. Indeed, a cross-section through the icecap reveals that the bed in the right (sticky) half of the domain is correctly195

identified already before the first friction update. In the left (slippery) half where the initial friction field does not allow any

sliding, however, ice thickness is greatly overestimated at that point. This is because in the absence of sliding, the ice thickness

needs to be much greater to be able to achieve an ice flux that is in line with dh/dtobs and mass balance. With each friction

update, the bed is made more slippery which increases flow velocities, thins the ice and lifts up the bed until eventually the

correct bed is found here as well. The final bed is in good agreement with the original one (Fig. 2).200
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3.2 Ice cap sensitivity

Next, we explore how sensitive the inversion is to errors in the input data and to modelling choices. To that end, we use the

synthetic ice cap where we have full knowledge of the ’true’ parameters. In the following, we provide an overview of the

results, while detailed figures and more elaborations can be found in the appendix.

3.2.1 Input errors205

We test the sensitivity to changes in the input mass balance (which is equal to modifying dh/dt, since it can be shown that

those two parameters may be understood as one through the concept of the apparent mass balance (Farinotti et al., 2009)) and

velocity in experiments where their magnitude is reduced or increased by 25%, 50% and 75%, respectively, relative to their

true value. Furthermore, we conduct experiments where we introduce random surface elevation noise with a standard deviation

of 5 m, 10 m, 15 m, 25 m and 50 m. Finally, we modify the ice temperature from its true value of 268 K to values of 264 K,210

266 K, 270 K and 272 K. For the sensitivity tests of mass balance and ice temperature, we investigate two scenarios: in one,

we assume that the true friction field is known, and hence no friction updates are applied; in the other, we assume no prior

knowledge of the friction field, requiring inversion for this parameter.

With a known friction field, mass balance errors translate to ice volume errors as the 5th root, as is expected from theory

for shear-dominated flow (Cuffey and Paterson, 2010). With friction updates, however, mass balance (and dh/dt) errors are215

reinforced. Consider, for instance, a negative mass balance error: this yields overall smaller ice thicknesses and therefore

reduced driving stresses, which in turn results in slower ice flow. To match the observed velocities, sliding must be increased

when friction updates (eq.(3)) are applied, resulting in further thinning of the ice. The same effect but with opposite sign

follows from a positive mass balance errors.

Errors in the observed ice velocity induce similar mechanisms. A negative error here means that the bed is made more sticky220

than it should be, resulting in too thick ice. However, this overestimation of ice thickness induces too-large ice-deformational

velocities, leading to an even more sticky bed when eq. (3) is applied, thus causing further thickening. Again, the opposite is

the case for a positive velocity error.

In the case of ice temperature errors, friction updates have a compensating effect. For instance, a negative ice temperature

error causes too-stiff ice and hence too-slow flow, which leads to too-thick ice without friction updates. With friction updates,225

however, too-slow flow results in a negative velocity mismatch (eq. (3)) leading to a more slippery bed which, in turn, thins

the ice again. Overall, the exact magnitude of amplifying or damping effects of friction updates in the presence of errors in

ice temperature, mass balance, dh/dt and velocity depends on several characteristics that vary between glaciers, e.g. sliding

magnitude and extent, and is thus hard to generalize.

For surface noise, we find that it changes the bed shape, with already small surface perturbations causing large bed re-230

sponses, as is expected from theory (Raymond and Gudmundsson, 2005; Bahr et al., 2014). However, increasing the regular-

ization parameter θ serves to mitigate these issues, although it makes the final bed shape more dependent on initial conditions.

Furthermore, we find that the calculated final ice volume is largely insensitive to surface noise.
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3.2.2 Inversion parameters

We now investigate how different parameter choices for the inversion influence results. Specifically, we investigate the length235

dt of the ice-flow model forward simulation, the relaxation parameter β (eq. (1)), the regularization parameter θ (eq. (2)) and

the role of initial conditions.

We find that our results show virtually no dependence on dt. Likewise, the recovered bed and friction field is not sensitive to

their initial guess. For β, larger values lead to faster convergence, but lower detail in the recovered bed as compared to smaller

values. This is because a large β can cause the bed to oscillate around its true value. The largest influence on the recovered bed240

is θ which serves to balance observations and model physics in the presence of input errors as well as to regularize the solution.

Larger expected errors in input data require larger θ to allow the model to accommodate these ’unreproducible’ characteristics

of the data. As mentioned previously, however, this increases the dependence on initial conditions since it means that also parts

of the non-erroneous observations are accommodated by surface updates rather than bed adjustments. Regardless of the quality

of the input, we find that choosing θ > 0 is beneficial to avoid small bed irregularities in the solution which are not justified by245

the input data.

4 Application to Kronebreen

Next, we apply our method to the tidewater glacier Kronebreen on Svalbard. With Kronebreen we here refer to a combined

glacier system consisting of the ice cap Holtedahlfonna, feeding the outlet glacier Kronebreen. The glacier system covers an

area of ∼380 km2 and an elevation range from sea level to around 1400 m. Highest flow velocities of up to >1000 m a−1250

are found on the highly crevassed glacier tongue (Schellenberger et al., 2015). Due to the large availability of in situ and

remote sensing data, Kronebreen has in recent years been subject of numerous glaciological studies on ice dynamics (e.g.

Schellenberger et al., 2015; Vallot et al., 2017), mass balance (e.g. van Pelt and Kohler, 2015; Deschamps-Berger et al., 2019),

subglacial hydrology (How et al., 2017), calving (Luckman et al., 2015; Vallot et al., 2018), perennial firn aquifers (Christianson

et al., 2015), seismicity (Köhler et al., 2019) and basal topography (Lindbäck et al., 2018).255

4.1 Observational data

The input data for the thickness inversion of Kronebreen comprises two DEMs based on Pleiades imagery from 2014 (Deschamps-

Berger et al., 2019) and 2020 which we use to generate a dh/dt field dh
dt obs

= S2020−S2014
6 (Fig. 3). The 2020 DEM has some

holes at higher elevations in the southern part of Kronebreen which we fill using 2014 data. Since dh/dt hence would be zero

there, we generate a dh/dt field as a function of surface elevation which we use to patch those holes. Whether to use the 2014260

DEM, the 2020 DEM or a mean of the two as input surface for the ice dynamics model is not an obvious choice. From a the-

oretical point, the surface that gave rise to (or was the product of) the aggregate ice dynamics in the period 2014-2020 should

be used. While this would favor using the mean of the two DEMs, it would imply using a surface that may not have existed

ever. We therefore choose to use the 2020 DEM instead as this avoids complications at the terminus where Kronebreen has
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retreated. There, differencing or taking a mean of the two DEMs would not yield a representative dh/dt field or glacier surface265

because the difference and mean between the 2014 surface elevation and sea level (which is what the 2020 DEM shows) does

not reflect the true ice loss or a realistic glacier surface shape. We also smooth the input DEM with a gaussian kernel prior

to feeding it to the inversion algorithm. In terms of mass balance, we use observations from ten stakes placed approximately

along the central flow line of Kronebreen and covering an altitude range from 505 m (mean over 2014-2020: -0.53 m w. eq.

yr−1) to 1116 m (mean: 0.96 m w. eq. yr−1) to generate a linear mass balance gradient which we apply over the whole altitu-270

dinal range of Kronebreen. Following general observations made at glaciers in Svalbard, we cap the maximum mass balance

at 1 m yr−1 (similar to van Pelt and Kohler (2015)). Internal and basal mass balance are neglected. Finally, we use surface

velocity observations from Millan et al. (2022) with a nominal date 2017-2018. Their performance is validated using measured

stake velocities (mean difference: 2.4 m yr−1 / 3.5%).

For validation of the modelled thicknesses, we use an extensive data set of measured bed elevations acquired using ground-275

penetrating radar (Lindbäck et al., 2018). The errors associated with that data are on the order of 10 m where the ice is thin

(mainly along the fast-flowing lower reaches of Kronebreen) and up to 30 m in the upper thick parts of Kronebreen. We

resample the radar tracks to a grid of 400 m resolution to match it with the model results.

4.2 Modelling choices

We set up a rectangular modelling domain with a regular grid spacing of 400 m. We define a glacier mask based on manually280

drawn outlines of Kronebreen using satellite imagery and ice flow observations. Inside the mask, we allow ice to exist while

in all other parts of the domain, the ice thickness is forced to zero by removing any ice existing there after each iteration.

The mask also covers some small parts of what is believed to belong to the neighboring glacier Kongsbreen where we have a

surface DEM from 2020. Since the boundary between Kronebreen and Kongsbreen is not perfectly known, some ice exchange

here cannot be excluded. While our experiments indicate that this is a better approach than cutting the mask at the assumed285

Kronebreen/Kongsbreen border (not shown), some boundary effects can still not be ruled out since we only model a small part

of Kongsbreen, thus not accounting for the entire mass flux potentially reaching the Kronebreen/Kongsbreen border in reality.

At all other mask boundaries, we do not apply any flux constraints or lateral friction since the friction inversion will account

for lateral drag if needed.

At the glacier terminus, we apply the hydrostatic water pressure. We also remove all floating ice and do not allow calving;290

this is because we cut off all ice outside the mask after each iteration anyway, hence artificially ’calving’ all ice that has

advanced beyond the known glacier extent. Furthermore, it needs to be ensured that in each forward simulation, the ice can

advance into the ocean unblocked by the bathymetry in front of the glacier (which is unknown). We therefore apply a zero

bed-slope in the flow direction at the ice-ocean boundary.

Ice flow is described by the SSA+SIA hybrid scheme available in PISM (Bueler and Brown, 2009). Note that while the SSA295

accounts for membrane stresses, the SIA does not and so ice flows strictly downhill in the absence of sliding (see sec. 4.5). Fur-

thermore, we set an isothermal flow law with a fixed ice temperature of 0°C where the ice softness A = 3.96×10−24 s−1 Pa−3.

While this ice temperature assumption is a simplification not valid everywhere, it follows from observations and modelling at
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Figure 3. Input data for Kronebreen inversion (coordinate system is UTM zone 33N). a) Kronebreen outline in black and border to neigh-

boring glacier Kongsbreen (KK border) in green; b) Location of Kronebreen in Svalbard (marked by red dot); c) observed rate of surface

elevation change dh/dt as computed by subtracting two digital elevation models; d) climatic mass balance derived from extrapolating stake

observations (locations shown by circles in main plot, and values by orange dots in inset) to the entire glacier using an elevation dependent

linear model (inset plot); e) observed velocities from remote sensing (Millan et al., 2022) validated with stake observations (inset plot)

many Svalbard glaciers where extensive meltwater refreezing in the firn keeps the ice close to the melting point (e.g. van Pelt

et al., 2019). In the bare ice areas of the ablation zone and near the glacier edges, the largest deviations from this assumption300

can be expected. We choose a linear sliding law by setting the parameters q = 1 and uth = 1 ms−1 in eq. (4). This causes the

sliding velocity to be directly proportional to the velocity misfit (eq. (3)), thus stabilizing the inversion.

4.3 Initial conditions

We derive an initial bed guess by subtracting, from the input 2020 DEM, an initial ice thickness Hinit calculated with the

perfect plasticity assumption (Nye, 1952), such that305

Hinit =
τb

ρg sinα
, (7)
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where ρ is the ice density, g is gravitational acceleration, α is surface slope as computed from the input DEM and τb is the

basal shear stress which we arbitrarily set to τb = 120 kPa. Based on the sensitivity experiments with the artificial ice cap, we

do not expect the choice of τb to impact our results significantly. We iteratively smooth the derived thickness field over four

times the ice thickness to account for longitudinal stress gradients (Kamb and Echelmeyer, 1986), and we apply a gaussian310

kernel to remove small-scale variability not justified by the input data (Habermann et al., 2012).

For basal friction, we derive an initial guess of τc in eq. (4) as τc = τduth

uobs
where τd is the driving stress at the start of the

inversion calculated as τd = ρgHinit tanα (Vallot et al., 2017).

4.4 Inversion parameters

We set the forward-modelling time step dt = 0.01 yrs. This small value allows a fast inversion while our experiments show315

that the results are not sensitive to this choice. For the scaling parameter β (eq. (1)), we apply a ’ramp-up’ procedure where

we let β increase as a function of the iteration count c, such that β = −10·β0
c+10 + β0, where β0 = 0.5. After each friction update,

c is reset to one. We do this since we know that the dh/dt misfit, and hence the bed corrections, are generally largest at the

start of the inversion and after friction updates; to stabilize the inversion, we find that it is beneficial to scale the bed updates

with a small β at those points. Since we assume that we have high-quality input data, we apply only weak regularization by320

setting the parameter θ = 0.05, meaning that 5% of bed updates are changing the surface in the opposite direction. Based on

our experiments, we see that after∼8000 iterations, no more changes to bed or friction field occur, and so we stop the inversion

there. We also see that it takes at most∼1000 iterations after a friction update to converge to a solution, making this our interval

for updates of τc (eq. (3)).

4.5 Inversion results325

We find that the iterations consistently reduce the dh/dt misfit (eq. (1)), interrupted by friction updates, as expected (Fig. 4a).

Owing to the surface updates, the misfit approaches zero in each interval between friction updates, showing that with our

regularization method, no stopping criterion is needed. It turns out that our initial bed guess overestimated ice thickness in most

parts of the domain as the bed generally becomes shallower. This is particularly true at the fast-flowing outlet glacier where

the friction updates decrease basal drag and thus are instrumental in ensuring that ice thickness there is not overestimated.330

The final mismatch between modelled and observed velocity magnitudes is generally on the order of a few percent where the

glacier is sliding, while they can be higher in the non-sliding parts of the accumulation area (Fig. 4b). Overall, this indicates

that the friction updates have helped to align model dynamics with reality.

When comparing with observed bed elevations from radar measurements, we see that our ice thickness generally matches

the observations well with deviations on the order of a few 10s of meters (Fig. 4). However, there is one larger area where our335

ice thickness is greatly overestimated by more than 250 m (Fig. 4c). This area is a flat and slow-flowing part which, as shown

by the observed flow-velocities, is only weakly connected to the main flow and hence only receives little ice from upstream

(Fig. 4d). However, in our model, we see that there is a distinct ’flow channel’ diverging from the main flow through which ice

is discharged into that area. Where the ’flow channel’ diverges in the model, basal velocities are close to zero, meaning that
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Figure 4. Raw output of Kronebreen inversion. a) dh/dt (eq. (1)) and bed misfit (eq. (6)) per iteration. b) Velocity misfit with purple color

indicating where modelled velocities exceed observed velocities by more than 50%. c) Difference between radar-derived and modelled bed

elevation. d) Zoom into area with largest bed deviations (green box in middle row) for observed velocities, modelled velocities and surface

aspect (with arrows denoting downhill direction, and colors showing into which sector the ice surface is sloping)

internal shear controls ice flux. As mentioned before, in the absence of sliding, the shear-dominated flow calculated by the SIA340

is strictly downhill. And indeed, we see that our input DEM is sloping towards the ’flow channel’ in that area (Fig. 4d). We

hence conclude that in reality, there are likely membrane stresses forcing the ice to not flow downhill which are not resolved by

our model physics, thus causing a mismatch in flow directions. Because of that, our model discharges ice into a slow and flat

area where, as is known from theory (Gudmundsson, 2003; Raymond and Gudmundsson, 2005), errors in the flux will lead to

large errors in the bed. Note that friction updates are of no help here: since the ice is too thick in the area, ice velocities in the345
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model are larger than in reality due to enhanced internal deformation, which means that a friction update makes the bed more

sticky (even if there already is no sliding) - while the opposite would be needed to lift up the bed.

This being said, we can still use the velocity observations to identify areas that are likely too thick. We do so by scanning our

model domain for areas where the ice velocity through internal deformation exceeds the observed velocities. Assuming that our

ice viscosity estimate is correct, a too-large ice thickness is the only first-order control on ice dynamics not constrained by the350

inputs that could induce higher velocities than observed in the absence of basal sliding. We apply this logic and conservatively

only mark areas where the observed ice velocity is exceeded by at least 50% to account for errors in the velocity observations

(purple areas in Fig. 4b). And indeed, this reliably identifies the area where the mismatch in flow directions induces the largest

errors in the modelled bed, as well as picking out other locations where the ice thickness is overestimated (as shown by the

radar validation). To update the bed elevation estimate in this area, we turn towards an analytical ice thickness equation based355

on the SIA (e.g. Millan et al., 2022) in which ice thickness H can be inferred from observed velocities such that

H =
(

(us+−ub)(n + 1)
2A(ρgα)n

) 1
n+1

(8)

with n = 3 being Glen´s flow law exponent (Glen, 1955) and us and ub surface and basal velocity, respectively. Note that

this equation requires a minimum slope αmin which we set to 0.025 (e.g. van Pelt et al., 2013) to prevent ice thickness going to

infinity as α approaches zero. Furthermore, note that us+ here refers to us +0.5us to account for the uncertainty in velocities.360

With this post-processing step, we are able to greatly reduce the errors in the modelled bed. Where we have identified and

corrected the bed based on the mismatch between ice-deformational and observed velocities, errors have decreased by several

hundreds of meters. We derive a final bed product by smoothing the computed bed with a gaussian kernel and so arrive at a

mean absolute deviation from observations (eq. (6)) of 78 m (as compared to 108 m for the raw output prior to post-processing)

(Fig. 5).365

From our input datasets, the least constrained one is arguably surface mass balance, since we rely on a few stakes that are

extrapolated to the entire glacier. An ice core drilled in 2005 on an ice divide in the upper accumulation area (1200 m a.s.l.) of

Kronebreen indeed shows considerably lower accumulation (0.5 m w.e. yr−1 during 1963-2005, (van der Wel et al., 2011)) than

the values we use here (1 m w.e. yr−1), demonstrating that there is large spatial inhomogeneity, likely as a result of variability

in wind exposure and associated snow redistribution. This is also known from other Svalbard glaciers (e.g. van Pelt et al.,370

2014). The velocity misfit map of our raw output indicates that in large parts in the accumulation area the ice is flowing too

fast despite no or very limited basal sliding. While this could also be the result of a too-high ice viscosity (note, however, that

we already use an ice temperature of 0°C), a likely explanation is a too positive mass balance which induces too thick ice and

hence too fast surface motion by internal deformation. We therefore repeat our thickness inversion after multiplying the mass

balance by 0.8. Indeed, this yields a better result with a mean absolute deviation of 100 m (was 108 m) before post-processing.375

The velocity misfit in the accumulation area is also reduced.
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Figure 5. Final output after ’post-processing’. a) Modelled ice thickness. b) bed elevation error as compared to radar observations, with mean

absolute error (eq.(6)) of 78 m. c) Correlation between radar-derived and modelled ice thickness.

5 Discussion and conclusions

We here presented a new thickness inversion method and tested it on both a synthetic ice cap as well as the tidewater glacier

Kronebreen in Svalbard. The input datasets are easily-obtainable surface observations where ready-to-use products already

exist on a global scale (dh/dtobs by Hugonnet et al. (2021), surface velocities by e.g. Millan et al. (2022), DEMs from e.g.380

NASA JPL (2020), glacier outlines from RGI Consortium (2017), mass balance by Rounce et al. (2023)). Observations of bed

height are not required. The key strength of the method lies in the fact that it produces distributed maps of ice thickness and

basal friction using any level of complexity in ice physics, while being computationally cheap. In essence, the inversion output

is not only a bed and friction map, but a fully spun-up glacier model that reproduces the present dynamic state of the modelled

glacier as constrained by observations. Therefore, using the output for prognostic simulations is possible without requiring any385

further model relaxation.

Although always converging to a bed solution, the experiments with the synthetic ice cap showed that errors in input data

can have varying impacts on the modelled bed depending on the inversion setup. With friction updates, the method is less

sensitive to errors in ice temperature than without friction updates, since the modelled basal friction field can compensate for

ice viscosity errors. However, the method is more sensitive to errors in mass balance and dh/dt with friction updates since390

an underestimation (overestimation) of mass flux and hence ice thickness reduces (increases) internal deformation, prompting
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changes in the friction field that further exacerbate the error. Likewise, errors in velocities reinforce themselves. Because of

that, we argue that friction updates should be used with caution, i.e. only when it is likely that sliding is important for a

specific glacier and when the input data is of sufficient quality. Indeed, for both the synthetic ice cap and Kronebreen, not

doing friction updates would have required us to assume a friction field without any knowledge of whether it is reflective of395

the ’true’ basal conditions or not, hence resulting in a somewhat arbitrary bed shape. For slow-flowing mountain glaciers with

only poor velocity observations, however, it may be more meaningful to assume a friction field or simply not allow any sliding.

In the case of non-sliding mountain glaciers with high-quality velocity data, velocity observations could be used to tune the ice

temperature. Regarding errors in an input DEM, we showed that our regularization methodology involving small adjustments to

the surface in each iteration is capable of producing a reasonable bed shape even in the presence of considerable surface errors,400

albeit with less spatial detail and stronger dependence on initial conditions for larger values of the regularization parameter θ.

Generally, the comparatively large sensitivity of a bed inversion to the input surface is an inherent problem that follows from

the ill-posed nature of all thickness inversions, and is thus largely unavoidable (Bahr et al., 2014). Since global DEMs are

generally quite accurate though (Chen et al., 2022), we anticipate that surface elevation may be a smaller problem for regional

ice thickness inversion than the available glacier outlines which sometimes include ice-free areas (RGI Consortium, 2017) that405

may induce unphysical results.

The inversion method presented here places great weight on internal model consistency. While this ensures that the output

will be in line with all fundamental principles of ice dynamics as represented in ice flow models, it also means that a real-world

process that is not reflected in the physics of the forward model will - if not accounted for otherwise - result in errors in the bed

shape. As such, unregularized data and model errors are subsumed in the final bed as seen for the Kronebreen experiments.410

While it is possible to estimate how errors in the input data are propagated to bed errors, this is unfortunately not true for model

errors which are difficult to quantify. Using our ’post-processing’ approach as outlined in sec. 4.5, however, allows alleviation

of some of the possible errors. Such an approach represents an interference with model physics in favor of a more accurate bed

map, and should therefore be applied when the modelled bed likely contains significant errors. This may be assessed based on

the mismatch in observed and modelled velocities as shown here. If only minor deviations are found, we propose to refrain415

from any post-processing to conserve the consistency between bed, model physics and input observations.

We do not consider thermodynamics in this study, but use a constant ice viscosity parameter. This could account for some

errors that we see at Kronebreen such that, for instance, a locally stiffer ice body might have resulted in slightly different

modelled flow directions in those places where we find the largest errors. How to implement thermodynamics in our inversion

methodology should hence be explored in future work.420

Code and data availability. PISM v.2.0.4 is freely available for download at http://www.pism.io/. Note that PISM needs to be built including

PISM´s Python bindings for optimal computational performance. Key scripts needed to perform the simulations done in this study will be

made publicly available on GitHub once the manuscript is published. Radar data for Kronebreen are available at https://doi.org/10.21334/

npolar.2017.702ca4a7(Lindbäck et al., 2018), and ice velocity at https://doi.org/10.6096/1007 (Millan et al., 2022)
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Appendix A425

Below, we elaborate further and present figures on the sensitivity experiments described in sec. 3.2.

A1 Input errors

We start by perturbing the mass balance such that it is reduced and increased uniformly in the domain by 25%, 50% and 75%.

Mass balance and dh/dt jointly control the mass flux through the glacier (and can even be lumped together into one variable,

following the concept of the apparent mass balance (Farinotti et al., 2009)), and so errors in either of them have the same effect.430

Therefore, we do not investigate them separately here, but focus on mass balance alone. A reduction in flux should lead to a

thinner glacier and shallower bed while the opposite should be the case for an increase in flux, as observed in our experiments

(Fig. A1). From the integrated form of Glen´s flow law (Cuffey and Paterson, 2010) for shear-dominated flow

H = n+2

√
q

2A
· n + 2
(ρg sinα)n , (A1)

it can be seen that flux (denoted by q) errors translate into thickness errors as the 5th root. If we prescribe the true friction435

field at the start of the inversion and do not apply any updates to it, the computed ice volumes using the perturbed mass

balances follow this relationship accurately. However, with friction updates, there are positive feedback effects which induce

larger errors. Since a reduction in mass flux means that the calculated ice thickness is smaller than its true value, the driving

stresses are smaller, resulting in slower ice flow. To match the observed velocities, sliding must hence be increased when

friction updates (eq. (3)) are applied, resulting in a further thinning of the ice through associated bed uplift. Therefore, with440

friction updates the final ice volume is smaller than what might be expected from the mass balance underestimation alone.

The opposite is the case when the mass flux through the glacier is overestimated. In this case, the overestimated ice thickness

induces larger driving stresses and hence an overestimation in surface velocities, prompting the friction field to be made more

sticky during a friction update. This induces further bed lowering, resulting in a stronger overestimation of ice thickness at the

end of the inversion. This effect, however, is only present in those areas where the glacier is sliding. In non-sliding areas, a445

further increase in the friction field will not lead to a thickness increase, putting an upper bound on this positive feedback effect.

To quantify the effects of flux errors when friction updates are applied is, therefore, more difficult than when no friction updates

are applied. Both the ratio between sliding and non-sliding areas in the glacier as well as the sliding magnitude control the final

errors. Generally though, due to the above, an underestimation of ice flux introduces larger errors than an overestimation, and

so we find that for our artificial ice cap, negative mass balance errors translate about linearly into volume errors, while positive450

ones introduce errors to a power somewhat below one (Fig. A1).

Next, we assume errors in the velocity field by increasing and reducing the reference velocities by 25%, 50% and 75%

uniformly throughout our domain (Fig. A2). Generally, a positive error in ’observed’ velocities should lead to a shallower bed

and hence a thinner ice cap because faster ’observed’ velocities mean that the bed must be more slippery under the same mass

flux. However, again a positive feedback mechanism acts on top of that: a thinning of the ice leads to a reduction in driving455
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Figure A1. a) Modelled ice volume after the inversion relative to true ice volume of the ice cap as a function of mass balance perturbations.

Colors indicate the mean absolute deviation between the inverted bed and the true bed. Triangles represent runs where the true friction field

was prescribed from the start of the inversion, meaning that no friction updates were applied. Dots denote runs where the friction field was

not known a priori, and therefore friction updates according to eq. (3) were applied. The dashed line is the 5th root of the mass balance errors,

i.e. the theoretical relationship between mass balance and ice volume errors in the absence of friction updates; final inverted bed topography

for the largest positive and negative (i.e. +-75%) mass balance perturbation when friction updates are applied shown in b) and c), respectively.

stresses, inducing smaller ice deformational velocities and hence a larger negative velocity misfit as compared to a situation

with the correct friction field. This results in further updates that reduce the basal friction, thin the ice and lift up the bed. For

a negative error in the ’observed’ velocity, however, again an upper bound in final thickness errors is found. This is because

lower observed velocities increase friction, but this is only relevant to the point until no more sliding at the base occurs. Further

strengthening of the bed has no consequences, as is particularly well visible in the non-sliding (right) half of the domain where460

the correct bed is found even when ’observed’ velocities are underestimated. As discussed previously, it is difficult to generalize

the impact of these complicating effects on ice volume estimates as they depend on sliding extent and magnitude. In the case

of the ice cap, we find that even a small underestimation of, say 25% of the flow velocities already results in no more sliding,

thus reaching the upper ice volume error limit of about 25% volume overestimation (Fig. A2).

Furthermore, we simulate how errors in the glacier surface shape translate into bed errors. To that end, we add random465

noise with a standard deviation of 5 m, 10 m, 15 m, 25 m and 50 m to the ice cap surface. From theory, it is well-known that

surface shape errors can lead to large bed elevation errors since bed undulations typically leave a surface expression that is only
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Figure A2. Modelled ice volume after the inversion relative to true ice volume of the ice cap as a function of velocity perturbations. Colors

indicate the mean absolute deviation between the inverted bed and the true bed. The dashed line denotes the ice volume if the inversion

is run without allowing any sliding anywhere; the final inverted bed topography for the largest positive and negative (i.e. +-75%) velocity

perturbation shown in b) and c), respectively.

a fraction of their magnitude (Raymond and Gudmundsson, 2005; Habermann et al., 2012; Bahr et al., 2014). Even a small

surface bump, therefore, will be interpreted as a large bed undulation by the inversion. Generally, this effect is stronger for

thicker and non-sliding ice, while thin sliding ice is affected to a lesser degree. Smoothing of the input data or regularization470

tools (e.g. eq. (2)) can mitigate problems arising from surface noise. To show the unmitigated effects of surface noise for the

purpose of this sensitivity analysis, we do not smooth the input data, and only apply the same weak regularization as in all

other experiments shown here by setting the parameter θ = 2.5% in eq. (2). Indeed, Fig. A3 demonstrates that already with

little surface noise, considerable bed noise is introduced, although the general bed shape can still be seen. As predicted by

theory, the sliding (left) half of the domain is less affected than the non-sliding right half. For large surface noise, the bed shape475

is essentially unrecognizable, as is exemplified by a mean absolute bed deviation above 200. However, Fig. A3 also shows that

the modelled ice cap volume is largely unaffected by surface noise, as is expected when the mass flux through the domain and

the reference velocity field are unaltered.

Next, we consider ice temperature errors (Fig. A4). Specifically, we change the ice temperature from its true value (used to

build the ice cap) of 268 K to values of 264 K, 266 K, 270 K and 272 K. With the isothermal flow law used here, this means480

that the ice is uniformly made stiffer or softer as compared to its true viscosity. Colder ice deforms less, and so a thicker ice
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Figure A3. Modelled ice volume after the inversion relative to true ice volume as a function of surface shape perturbations with random

noise. Colors indicate the mean absolute deviation between the inverted bed and the true bed; final inverted bed topography for the smallest

and largest surface shape perturbation shown in b) and c), respectively.

cap can be expected from a negative ice temperature error, whereas the opposite is the case for a positive ice temperature error.

However, the results of the perturbation analysis suggest that this is not the case. Rather, only small errors in final ice volume

below 10% are introduced by perturbing ice temperature. This is because the friction updates compensate for too stiff or too

soft ice by reducing the subglacial friction if the ice is too slow, thinning the glacier, or by increasing friction if the ice is too485

fast (again, however, if there is no sliding at all, this does not have any effect). Indeed, when prescribing the true friction field

at the start of the inversion and not applying any updates to it, larger errors in final ice volume are apparent for both too cold

and too warm ice, as compared to when friction updates were enabled (Fig. A4).

A2 Inversion parameters

We now investigate how different parameter choices for the inversion influence results. We first look at different values for the490

length dt of the ice-flow forward simulation. We explore values of 1 yr, 0.5 yr, 0.25 yr, 0.15 yr, 0.05 yr, 0.025 yr and 0.01 yr.

Our results show virtually no difference in the final bed shape or remaining bed misfit (fig. A5), such that using small values

for dt can be used to save computational time.

Furthermore, we investigate different values for the relaxation parameter β in eq. (1) (Fig. A6). β scales the dh/dt misfit

into bed corrections. If β is large, the inversion should progress faster, but smaller bed features might not be resolved since495
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Figure A4. Modelled ice volume after the inversion relative to true ice volume of the ice cap as a function of ice temperature perturbations.

Colors indicate the mean absolute deviation between the inverted bed and the true bed. Triangles represent runs where the true friction field

was prescribed from the start of the inversion, meaning that no friction updates were applied. Dots denote runs where the friction field was

not known a priori, and therefore friction updates according to eq. (3) were applied; the final inverted bed topography for the largest positive

and negative (i.e. 264 K and 272 K, respectively) ice temperature perturbation when friction updates are applied is shown in b) and c),

respectively.

they are overcompensated, resulting in a bed oscillating around its true value during the iterations. Conversely, a small β slows

down the inversion, but results in a better resolved bed. Our sensitivity experiments confirm this. Indeed, with a larger β the

bed misfit (eq. (6)) is quick to converge towards a constant value after each friction update while this is substantially slower for

small β. However, the final inverted bed has a larger remaining misfit for a large than for a small β (Fig. A6).

Now, we investigate different choices of the regularization parameter θ in eq. (2) (Fig. A7). As discussed previously, θ500

serves the purpose of both regularizing the solution as well as allowing the inversion to converge when input data and model

physics otherwise cannot balance, e.g. due to errors in the input data that are not reproducible with ice-flow physics. In the

presence of larger errors, a larger θ will be required, because this gives the model flexibility to accommodate these erroneous

observations. The choice of θ may thus be regarded as a measure for how well the ice-flow model is deemed to be able to

reproduce observations. At the same time, however, a larger θ also increases the dependence on initial conditions because it505

means that a larger part of the dh/dt misfit is not accommodated with bed updates, but with surface adjustments. We start by

testing the regularization effect of θ by varying it without perturbing the input data. We test values of 0, 0.015, 0.05, 0.075,
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Figure A5. Modelled ice volume after the inversion relative to true ice volume of the ice cap as a function of different values for the

forward modelling time step dt. Colors indicate the mean absolute deviation between the inverted bed and the true bed; the final inverted bed

topography for the smallest and largest dt (i.e. 0.01 yrs and 1 yr, respectively) shown in b) and c), respectively.

Figure A6. Sensitivity of bed inversion to the parameter β (eq. (1)). a) bed misfit per iteration step; b) dh/dt misfit per iteration step. Inset

plots show zoom to iterations 8000 to 10000. Sharp steps (a) or peaks (b) occur when friction updates are applied.

0.1 and 0.3 for θ. The results show that without any surface updates (i.e. θ = 0), small-scale bed irregularities are introduced

to the solution. They are too small to leave any noticeable impression on ice dynamics or surface shape, and so the inversion

is not wrong in producing them; from the available surface ’observations’, it is impossible to tell whether these features exist510
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Figure A7. Final bed shape as a function of changing the regularization parameter θ. Upper row: setup without perturbed surface. Lower

row: surface perturbed by adding random noise with a standard deviation of 5 m.

or not. However, it is generally undesirable to include features in the solution if they are not justified by the input data, and

so regularization is in order. With increasing θ, the computed bed becomes smoother, however, this eventually comes at the

cost of detail in the solution. For θ = 0.3, the bed highs are no longer sharply visible. Next, we test how different choices of

θ influence the inverted bed in the presence of input data errors. We investigate this here by applying the different values for

θ on our ice cap where the surface shape was perturbed by adding random noise with a standard deviation of 5 m. In this515

case, the forward model crashes since it cannot accommodate the perturbed surface shape if θ = 0, whereas increasing θ helps

eliminating some of the surface noise. Again, though, when θ is too large, the bed is smooth, but also largely devoid of its

characteristic topographic highs (Fig. A7). Note that the computed ice volume is always within 1% of the true ice volume

regardless of θ.

Finally, we also test whether a different initial bed guess influences the results. To that end, we assume that the ice thickness520

is zero everywhere in the domain at the start of the inversion. We find that this has no significant impact on the recovered bed

(not shown). Likewise, a different initial guess for the friction field (namely, we assume that it is slippery everywhere), does

not change the bed solution. This suggests that our inversion is relatively stable towards initial conditions, although this is

dependent on the choice of θ as described above.
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